Batch Value Function Approximation via Support Vectors

نویسندگان

  • Thomas G. Dietterich
  • Xin Wang
چکیده

We present three ways of combining linear programming with the kernel trick to find value function approximations for reinforcement learning. One formulation is based on SVM regression; the second is based on the Bellman equation; and the third seeks only to ensure that good moves have an advantage over bad moves. All formulations attempt to minimize the number of support vectors while fitting the data. Experiments in a difficult, synthetic maze problem show that all three formulations give excellent performance, but the advantage formulation is much easier to train. Unlike policy gradient methods, the kernel methods described here can easily 'adjust the complexity of the function approximator to fit the complexity of the value function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimizing a General Penalty Function on a Single Machine via Developing Approximation Algorithms and FPTASs

This paper addresses the Tardy/Lost penalty minimization on a single machine. According to this penalty criterion, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Besides its application in real world problems, Tardy/Lost measure is a general form for popular objective functions like weighted tardiness, late work and tardiness with reje...

متن کامل

Fast Incremental SVDD Learning Algorithm with the Gaussian Kernel

Support vector data description (SVDD) is a machine learning technique that is used for single-class classification and outlier detection. The idea of SVDD is to find a set of support vectors that defines a boundary around data. When dealing with online or large data, existing batch SVDD methods have to be rerun in each iteration. We propose an incremental learning algorithm for SVDD that uses ...

متن کامل

Solving Factored POMDPs with Linear Value Functions

Partially Observable Markov Decision Processes (POMDPs) provide a coherent mathematical framework for planning under uncertainty when the state of the system cannot be fully observed. However, the problem of finding an exact POMDP solution is intractable. Computing such solution requires the manipulation of a piecewise linear convex value function, which specifies a value for each possible beli...

متن کامل

Sequential Bayesian optimal experimental design via approximate dynamic programming

The design of multiple experiments is commonly undertaken via suboptimal strategies, such as batch (open-loop) design that omits feedback or greedy (myopic) design that does not account for future effects. This paper introduces new strategies for the optimal design of sequential experiments. First, we rigorously formulate the general sequential optimal experimental design (sOED) problem as a dy...

متن کامل

Experiments in Value Function Approximation with Sparse Support Vector Regression

We present first experiments using Support Vector Regression as function approximator for an on-line, sarsa-like reinforcement learner. To overcome the batch nature of SVR two ideas are employed. The first is sparse greedy approximation: the data is projected onto the subspace spanned by only a small subset of the original data (in feature space). This subset can be built up in an on-line fashi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001